Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474150

RESUMO

Hemoglobinopathies are monogenic disorders affecting hemoglobin synthesis. Thalassemia and sickle cell disease (SCD) are considered the two major hemoglobinopathies. Thalassemia is a genetic disorder and one of the major hemoglobinopathies determined by an impairment of globin chain production, which causes an alteration of erythropoiesis, an improvement in hemolysis, and an alteration of iron homoeostasis. In SCD, the mutations are on the ß-globin chain of hemoglobin which results in a substitution of glutamic acid by valine with consequent formation of Hemoglobin S (HbS). Several factors are involved in bone metabolism alteration in patients with hemoglobinopathies, among them hormonal deficiency, bone marrow hyperplasia, iron overload, inflammation, and increased bone turnover. Bone metabolism is the result of balance maintenance between bone deposition and bone resorption, by osteoblasts (OBs) and osteoclasts (OCs). An impairment of this balance is responsible for the onset of bone diseases, such as osteoporosis (OP). Therefore, here we will discuss the alteration of bone metabolism in patients with hemoglobinopathies and the possible therapeutic strategies to contain and/or counteract bone health impairment in these patients, taking into consideration not only the pharmacological treatments already used in the clinical armamentarium, but also the new possible therapeutic strategies.


Assuntos
Anemia Falciforme , Hemoglobinopatias , Talassemia , Talassemia beta , Humanos , Densidade Óssea , Hemoglobinopatias/genética , Anemia Falciforme/genética , Hemoglobina Falciforme , Talassemia beta/genética
2.
Cancers (Basel) ; 16(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38398105

RESUMO

The advancement of anti-cancer therapies has markedly improved the survival rate of children with cancer, making them long-term childhood cancer survivors (CCS). Nevertheless, these treatments cause a low-grade inflammatory state, determining inflamm-aging and, thus, favoring the early onset of chronic diseases normally associated with old age. Identification of novel and safer therapeutic strategies is needed to counteract and prevent inflamm-aging. Macrophages are cells involved in immune and inflammatory responses, with a pivotal role in iron metabolism, which is related to inflammation. We obtained macrophages from CCS patients and evaluated their phenotype markers, inflammatory states, and iron metabolism by Western blotting, ELISA, and iron assays. We observed a strong increase in classically activated phenotype markers (M1) and iron metabolism alteration in CCS, with an increase in intracellular iron concentration and inflammatory markers. These results suggest that the prevalence of M1 macrophages and alteration of iron metabolism could be involved in the worsening of inflammation in CCS. Therefore, we propose macrophages and iron metabolism as novel therapeutic targets to counteract inflamm-aging. To avoid toxic regimens, we tested some nutraceuticals (resveratrol, curcumin, and oil-enriched lycopene), which are already known to exert anti-inflammatory properties. After their administration, we observed a macrophage switch towards the anti-inflammatory phenotype M2, as well as reductions in pro-inflammatory cytokines and the intracellular iron concentration. Therefore, we suggest-for the first time-that nutraceuticals reduce inflammation in CCS macrophages through a novel anti-inflammatory mechanism of action, modulating iron metabolism.

4.
Blood Cancer J ; 12(6): 95, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750691

RESUMO

Functional precision medicine in AML often relies on short-term in vitro drug sensitivity screening (DSS) of primary patient cells in standard culture conditions. We designed a niche-like DSS assay combining physiologic hypoxia (O2 3%) and mesenchymal stromal cell (MSC) co-culture with multiparameter flow cytometry to enumerate lymphocytes and differentiating (CD11/CD14/CD15+) or leukemic stem cell (LSC)-enriched (GPR56+) cells within the leukemic bulk. After functional validation of GPR56 expression as a surrogate for LSC enrichment, the assay identified three patterns of response, including cytotoxicity on blasts sparing LSCs, induction of differentiation, and selective impairment of LSCs. We refined our niche-like culture by including plasma-like amino-acid and cytokine concentrations identified by targeted metabolomics and proteomics of primary AML bone marrow plasma samples. Systematic interrogation revealed distinct contributions of each niche-like component to leukemic outgrowth and drug response. Short-term niche-like culture preserved clonal architecture and transcriptional states of primary leukemic cells. In a cohort of 45 AML samples enriched for NPM1c AML, the niche-like multiparametric assay could predict morphologically (p = 0.02) and molecular (NPM1c MRD, p = 0.04) response to anthracycline-cytarabine induction chemotherapy. In this cohort, a 23-drug screen nominated ruxolitinib as a sensitizer to anthracycline-cytarabine. This finding was validated in an NPM1c PDX model.


Assuntos
Leucemia Mieloide Aguda , Células-Tronco Mesenquimais , Antraciclinas/metabolismo , Antraciclinas/uso terapêutico , Citarabina/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Neoplásicas/metabolismo
5.
Cell ; 185(1): 169-183.e19, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34963055

RESUMO

Non-small cell lung cancers (NSCLCs) harboring KEAP1 mutations are often resistant to immunotherapy. Here, we show that KEAP1 targets EMSY for ubiquitin-mediated degradation to regulate homologous recombination repair (HRR) and anti-tumor immunity. Loss of KEAP1 in NSCLC induces stabilization of EMSY, producing a BRCAness phenotype, i.e., HRR defects and sensitivity to PARP inhibitors. Defective HRR contributes to a high tumor mutational burden that, in turn, is expected to prompt an innate immune response. Notably, EMSY accumulation suppresses the type I interferon response and impairs innate immune signaling, fostering cancer immune evasion. Activation of the type I interferon response in the tumor microenvironment using a STING agonist results in the engagement of innate and adaptive immune signaling and impairs the growth of KEAP1-mutant tumors. Our results suggest that targeting PARP and STING pathways, individually or in combination, represents a therapeutic strategy in NSCLC patients harboring alterations in KEAP1.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/imunologia , Interferon Tipo I/metabolismo , Neoplasias Pulmonares/imunologia , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Reparo de DNA por Recombinação/genética , Proteínas Repressoras/metabolismo , Evasão Tumoral/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Imunidade Inata/genética , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Mutação , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Transdução de Sinais/genética , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...